Engineering the specificity of antibacterial fluoroquinolones: benzenesulfonamide modifications at C-7 of ciprofloxacin change its primary target in Streptococcus pneumoniae from topoisomerase IV to gyrase.
نویسندگان
چکیده
We have examined the antipneumococcal mechanisms of a series of novel fluoroquinolones that are identical to ciprofloxacin except for the addition of a benzenesulfonylamido group to the C-7 piperazinyl ring. A number of these derivatives displayed enhanced activity against Streptococcus pneumoniae strain 7785, including compound NSFQ-105, bearing a 4-(4-aminophenylsulfonyl)-1-piperazinyl group at C-7, which exhibited an MIC of 0.06 to 0.125 microg/ml compared with a ciprofloxacin MIC of 1 microg/ml. Several complementary approaches established that unlike the case for ciprofloxacin (which targets topoisomerase IV), the increased potency of NSFQ-105 was associated with a target preference for gyrase: (i) parC mutants of strain 7785 that were resistant to ciprofloxacin remained susceptible to NSFQ-105, whereas by contrast, mutants bearing a quinolone resistance mutation in gyrA were four- to eightfold more resistant to NSFQ-105 (MIC of 0.5 microg/ml) but susceptible to ciprofloxacin; (ii) NSFQ-105 selected first-step gyrA mutants (MICs of 0.5 microg/ml) encoding Ser-81-to-Phe or -Tyr mutations, whereas ciprofloxacin selects parC mutants; and (iii) NSFQ-105 was at least eightfold more effective than ciprofloxacin at inhibiting DNA supercoiling by S. pneumoniae gyrase in vitro but was fourfold less active against topoisomerase IV. These data show unequivocally that the C-7 substituent determines not only the potency but also the target preference of fluoroquinolones. The importance of the C-7 substituent in drug-enzyme contacts demonstrated here supports one key postulate of the Shen model of quinolone action.
منابع مشابه
Contribution of topoisomerase IV and DNA gyrase mutations in Streptococcus pneumoniae to resistance to novel fluoroquinolones.
In this study, we assessed the activity of ciprofloxacin, levofloxacin, sparfloxacin, and trovafloxacin against clinical isolates of Streptococcus pneumoniae that were resistant to the less-recently developed fluoroquinolones by using defined amino acid substitutions in DNA gyrase and topoisomerase IV. The molecular basis for resistance was assessed by using mutants selected with trovafloxacin,...
متن کاملTargeting of DNA gyrase in Streptococcus pneumoniae by sparfloxacin: selective targeting of gyrase or topoisomerase IV by quinolones.
gyrA and parC mutations have been identified inn Streptococcus pneumoniae mutants stepwise selected for resistance to sparfloxacin, an antipneumococcal fluoroquinolone. GyrA mutations (at the position equivalent to resistance hot spot Ser-83 in Escherichia coli GyrA) were found in all 17 first-step mutants examined and preceded DNA topoisomerase IV parC mutations (at Ser-79 or Glu-83), which ap...
متن کاملTarget specificity of the new fluoroquinolone besifloxacin in Streptococcus pneumoniae, Staphylococcus aureus and Escherichia coli.
OBJECTIVES Besifloxacin is a new fluoroquinolone in development for ocular use. We investigated its mode of action and resistance in two major ocular pathogens, Streptococcus pneumoniae and Staphylococcus aureus, and in the reference species Escherichia coli. METHODS Primary and secondary targets of besifloxacin were evaluated by: (i) mutant selection experiments; (ii) MIC testing of defined ...
متن کاملStreptococcus pneumoniae DNA gyrase and topoisomerase IV: overexpression, purification, and differential inhibition by fluoroquinolones.
Streptococcus pneumoniae gyrA and gyrB genes specifying the DNA gyrase subunits have been cloned into pET plasmid vectors under the control of an inducible T7 promoter and have been separately expressed in Escherichia coli. Soluble 97-kDa GyrA and 72-kDa GyrB proteins bearing polyhistidine tags at their respective C-terminal and N-terminal ends were purified to apparent homogeneity by one-step ...
متن کاملPrimary targets of fluoroquinolones in Streptococcus pneumoniae.
Mutants of wild-type Streptococcus pneumoniae IID553 with mutations in parC were obtained by selection with trovafloxacin, levofloxacin, norfloxacin, and ciprofloxacin. All of the parC mutants were cross-resistant to the selecting agents but were not resistant to gatifloxacin and sparfloxacin. On the other hand, gyrA mutants were isolated by selection with gatifloxacin and sparfloxacin. The gyr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 44 2 شماره
صفحات -
تاریخ انتشار 2000